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Abstract:  Experimental corrosion study was often high-cost and time-consuming since large-scale trial experiments were 

carried out. An In-silico method was used to study the inhibition performance of twenty-five amino acids and 

related compounds. Density Functional Theory (B3LYP/6-31G*) quantum chemical calculation method was used 

to find the optimized geometry of the studied inhibitors. Additionally, a linear quantitative structure-activity 

relationship (QSAR) model was built by Genetic Function Approximation (GFA) method to run the regression 

analysis and establish correlations between different types of descriptors and the measured corrosion inhibition 

efficiencies which was used to predict the corrosion inhibition efficiencies of the studied inhibitors. The prediction 

of corrosion efficiencies of these inhibitors nicely matched the experimental measurements. The correlation 

parameters obtained are Rtrain
2 = 0.98, Radjusted

2 = 0.98, QLOO
2 = 0.97,  Rtest

2 =0.86. This indicates that the model 

was excellent on verifying with internal and external validation parameters. The affection of acidic solution was 

considered in molecular dynamics simulation and the calculated adsorption energies for most of the inhibitors is 

˃100 kcal mol−1 suggesting chemisorptive interactions. 
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Introduction 

Corrosion is an undesirable process that affects several areas 

of industrial activity, especially the oil industry, resulting in 

huge economic losses (Szklarska-Smialowska, 2005). It is a 

common problem for steel and directly impacts its cost and 

safety. The corrosion of iron can cause structural damage and 

lead to changes in the mechanical and chemical properties of 

plants, vessels, pipes, and other processing equipment. Several 

countries have attempted to relate the cost of corrosion to their 

gross national product. The annual cost of corrosion 

worldwide is estimated at $ 2.2 Trillion (2010), which is about 

3% of the world’s gross domestic product of $ 73.33 Trillion 

(United States in 2012-G2MT Labs, Al Hashem, 2011). 

Preventing the corrosion of steel has played an important role 

in various industries, especially in the chemical and 

petrochemical processing industries that employ the use of 

steel (Singh et al., 2016). Although it is not possible to 

completely avoid the corrosion process but there are several 

ways to prevent it or slow down the corrosion rate (Nwankwo, 

2016). Several organic compounds especially those that 

contain N, O, S, and P heteroatoms, as well as π-electron 

systems have been previously used as corrosion inhibitors for 

metals in aqueous solutions (Murulana et al., 2012; Arslan et 

al., 2009; Praveen and Venkatesha, 2009). Although many 

heterocyclic compounds have been successfully used as 

corrosion inhibitors in several metallic systems, most of them 

were toxic and non-biodegradable (Eddy and Mamza, 2009). 

With the current advancement of environmental safety, 

researchers were focused on the environmental friendly 

corrosion inhibitors (Yadav et al., 2012; Lyon, 2004). Amino 

acids which were non-toxic, easily available and completely 

soluble in aqueous media were considered to be the most 

promising green inhibitors (Lyon, 2004). Various 

experimental and theoretical techniques have been used to 

study the corrosion in an acidic solution such as 

electrochemical, weight loss, quantum chemical and surface 

morphology (Singh et al., 2016; Nan et al., 2015; Khaled, 

2012; Hassan et al., 2007; Yurt et al., 2005). Though the 

experimental measures are the conventional methods but were 

often expensive and time-consuming since large-scale trial 

experiments were often carried out (Zhang et al., 2011; 

Muster et al., 2009). In-silico techniques, which can overcome 

these challenges, have attracted researchers’ great attention in 

recent years (Beese, 2013; Yuan, 2013; Venzlaff, 2013). 

Quantum chemical methods have already proven to be very 

useful in determining the molecular structure as well as 

elucidating the electronic and reactivity centers of a 

compound (Kraka and Cremer, 2000). 

Recently, quantitative structure-activity relationship (QSAR) 

and Molecular dynamic simulation has aroused many 

researchers’ interest in the studies of corrosion inhibitors 

(Tong et al., 2005). The success of the QSAR approach can be 

explained by the insights offered for the structural 

determination of chemical properties and the possibility of 

estimating the properties of the new chemical compounds 

without any need for them to be synthesized and tested (He 

and Jurs, 2005). However, the success of any QSAR model 

depends on the accuracy of input data, selection of the 

appropriate descriptors, statistical tools, and most important 

validation of the developed models (He and Jurs, 2005; 

Ghafourian and Cronin, 2005; Tropsha et al.,  2003). It has 

been proved to be very helpful for predicting the inhibition 

efficiencies of novel corrosion inhibitors (Zhang et al., 2005; 

Zhao et al., 2014).  

Moreover, to study the adsorption behavior of amino acids on 

a metal surface, molecular dynamics simulation was used to 

study the adsorption configuration and adsorption strength of 

amino acids on a metal surface (Khaled, 2010; Fu et al., 2010; 

Amin et al., 2010; Deng et al., 2012; Hu and Dai, 2012). Also 

various factors, such as the adsorption of the solvent 

molecules and the affection of the acidic solution, which 

would influence the adsorption behaviors of the amino acid 

compounds greatly, should also be considered in the 

molecular dynamics simulation. In this paper, Molecular 

modeling and dynamics simulations were carried out to 

provide theoretical based explanations for the inhibitory 

behavior of some amino acids derivatives.  

 

Materials and Methods  

Data sets  
Twenty-five amino acids and their related compounds used as 

steel corrosion inhibitors were collected from the literature 

(Khaled and Hackerman, 2003; Hluchan et al., 1988; Babić-

Samardžija et al., 2003) and used for this present study. Their 

molecular structures and inhibition efficiencies were shown in 

Table 1. 
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Table 1: Inhibition efficiencies and molecular structures of the studied inhibitor series 

S/N Compound %IE S/N Compound %IE 

1 

 

50 

14 

 

34 

2 

 

59 

15 

 

43 

3 

 

63 

16 

 

77.4 

4 

 

47 

17 

 

75.1 

5 

 

80 

18 

 

41 

6 

 

52 

19 

 

71 

7 

 

39 

20 

 

63.62 

8 

 

73 

21 

 

71.79 

9 

 

53 

22 

 

63.24 

10 

 

51 

23 

 

66.83 

11 

 

87 

24 

 

49.88 

12 

 

75 

25 

 

60.09 

13 

 

67 
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Geometry optimization and QSAR descriptors calculations 

Geometry optimization 

The chemical structure of each compound in the data sets was 

drawn with ChemDraw ultra V12.0. Optimization were 

performed using the SPARTAN’14 V1.1.0 Wave Function 

programming Package on Dell Intel(R)Core(TM)i7-5500U 

CPU), 16.00GB RAM @ 2.400GHz  2.400GHz  processor on 

Windows 8.1 Pro 64-bit Operating system, ×64-based 

processor. The computational method invoked for calculating 

geometries in the present study is Density Functional Theory 

(DFT) method in combination with the B3LYP functional 

with 6-311+G (d,p) basis set (Larif, 2013). The B3LYP hybrid 

functional of DFT method uses Becke’s three-parameter 

functional (B3) and incorporates a blend of HF with DFT 

exchange terms associated with the gradient-corrected 

correlation functional of Lee, Yang, and Parr (LYP) (Becke, 

1993). Full geometry optimizations were carried out on 

neutral molecules in vacuum.  

QSAR descriptor calculation 
The molecular descriptors used in this QSAR modeling were 

calculated using Padel descriptor toolkit (Yap, 2011), Spartan 

14 software (Wavefunction Inc., 2013) and Material studio 

software (Accelrys Inc., 2007). Over 500 descriptors ranging 

from 0-3D were used for this work. The quantum chemical 

descriptors were the parameters obtained using DFT 

computation with Spartan 14 software such as the energy of 

the highest occupied molecular orbital (E-HOMO), the energy 

of the lowest unoccupied molecular orbital (E-LUMO), 

Dipole Moment, Polarizability etc. The Spartan files of all the 

optimized molecules were then saved in SD file format, which 

is the recommended input format in PaDEL-Descriptor 

software V2.20 (Yap, 2011). Molecular descriptors such as 

atom-type topological state descriptors, 2D-Autocorrelations, 

WHIM, Petitjean shape index, count of chemical substructures 

and binary fingerprints of chemical substructures were 

calculated using the paDEL program (PaDEL-Descriptor, 

2014). In addition, some structural and topological descriptors 

were generated from Material studio 8.0 and incorporated into 

the analysis.  

QSAR model building 
In order to obtain validated QSAR models, the descriptors 

generated were divided into training and test sets. The training 

set was used to generate the model, while the test set was used 

for the external validation of the model (Kennard and Stone, 

1969). The correlation between inhibition efficiency of the 

molecules against corrosion of steel and the calculated 

descriptors were obtained via correlation analysis using the 

Microsoft excel package in Microsoft office 2013. Pearson's 

correlation matrix was used as a model, in order to select the 

suitable descriptors for each regression analysis. The selected 

descriptors were subjected to regression analysis with the 

experimentally determined inhibition efficiencies as the 

dependent variable and the selected descriptors as the 

independent variables using Genetic function approximation 

(GFA) method in Material studio software. 

 The number of descriptors in the regression equation was set 

to be 5, and Population and Generation were set to be 1000 

and 1000, respectively. The number of top equations returned 

was 4 out of which the best one was selected based on 

statistical significance. Mutation probability was set to be 0.1, 

and the smoothing parameter was 0.5. The models were 

scored based on Friedman’s Lack of Fit (LOF). In GFA 

algorithm, an individual or model was represented as a one-

dimensional string of bits. The GFA algorithm approach has a 

number of important advantages over other standard 

regression analysis techniques. It builds multiple models 

rather than a single model (Accelrys Inc., 2007). It 

automatically selects which features are to be used in the 

models and is better at discovering combinations of features 

that take advantage of correlations between multiple features 

(Khaled, 2008). GFA incorporates Friedman’s lack-of-fit 

(LOF) error measure, which estimates the most appropriate 

number of features, resists over fitting, provides information 

not available from the standard regression analysis and allows 

control over the smoothness of fit. Also, it can use a larger 

variety of equation term types in the construction of its 

models. 

Evaluation of the QSAR model 

The predictive ability of the best model was evaluated by 

internal and external validation parameters. The validation 

parameters were compared with the minimum recommended 

standards for a generally acceptable QSAR model (Table 2) 

(Abdulfatai et al., 2017).  

 

Table 2: Validation metrics for a generally acceptable 

QSAR model 

 

The various internal and external validation parameters used 

in this study are presented as: 

(a) R2 (the square of the correlation coefficient): Describes 

the fraction of the total variation attributed to the model. The 

closer the value of R2 is to 1.0, the better the regression 

equation explains the Y variable. R2 is the most commonly 

used internal validation indicator and is expressed in equation 

1: 

R2 =  1 −
∑(𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒𝑑)2

∑(𝑌𝑜𝑏𝑠−𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)2                     1 

Where: Yobs; Ypred; Ytraining are the experimental 

property, the predicted property and the mean experimental 

property of the samples in the training set, respectively (Wu et 

al., 2015). 

 

(b) Adjusted R2 (R2
adj): R2 value varies directly with the 

increase in number of regressors i.e. descriptors, thus, R2 

cannot be a useful measure for the goodness of model fit. 

Therefore, R2 is adjusted for the number of explanatory 

variables in the model. The adjusted R2 is defined as equation 

2: 

R2
adj = 1- (1 − 𝑅2)

𝑁−1

𝑁−𝑃−1
 = 

(𝑁−1)𝑅2−𝑃

𝑁−𝑃+1
                 2 

Where: p = number of independent variables in the model 

and N = sample size (Brandon and Aline, 2015). 

 

(c) Q2 (Leave one out cross validation coefficient): The 

LOO cross validated coefficient (Q2) is given in equation 3;  

Q2 =  1 −
∑(𝑌𝑝−𝑌)2

∑(𝑌−𝑌𝑚)2              3 

Where: Yp and Y represent the predicted and observed 

activity respectively of the training set and Ym the mean 

activity value of the training set (Brandon and Aline, 2015). 

 

Symbol Name Threshold Source 

R2 Coefficient of  

determination 
≥ 0.6 

Ravichandran  

et al. (2011) 

Q2 LOO  cross  
validation coefficient 

> 0.5 
Ravichandran  
et al. (2011) 

R2
pred. External test set’s  

coefficient of 
determination 

≥ 0.6 
Ravichandran  

et al. (2011) 

R2 - Q2 Difference between  

R2 and Q2 
≤ 0.3 

Ravichandran  

et al. (2011) 
F value 

Variation ratio 
High 

Ravichandran  

et al. (2011) 

P95% 

Confidence interval at  

95% confidence level. 

< 0.05 

Jaiswal et al. 
(2004)  

And Shapiro &   

Bernhard (1988) 

http://www.ftstjournal.com/


Theoretical Explanations for the Inhibitory Behavior of some Amino Acids Derivatives 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; October, 2018: Vol. 3 No. 2A pp. 365 – 372 

 

368 

(d) R2
pred: R2

pred.is termed the predictive R2 of a development 

model and is an important parameter that is used to test the 

external predictive ability of a QSAR model. The predicted R2 

value is calculated using equation 4; 

𝑃𝑟𝑒𝑑. 𝑅2 = 1 −
∑[𝑌 (𝑡𝑒)− 𝑌𝑃𝑟𝑒𝑑 (𝑡𝑒)]2

∑[𝑌(𝑡𝑒)− 𝑌𝑚 (𝑡𝑟)]2
                 4 

 

Ypred.(test) and Y(test) indicate predicted and observed 

activity values, respectively of the test set compounds and 

Ym(tr) indicates mean activity value of the training set 

(Ravichandran et al., 2011). 

Applicability domain 

The applicability domain (AD) of QSAR model was used to 

verify the prediction reliability, identify the problematic 

compounds and predict the compounds with an acceptable 

activity that fall within the domain. The most common 

methods used for determination of the AD of QSAR models 

have been described by Grammatica et al. (2007) that used the 

leverage values for each compound. The leverage approach 

allows the determination of the position of a new chemical in 

the QSAR model, i.e. whether a new chemical will lie within 

the structural model domain or outside of it. The leverage 

approach along with the Williams Plot is used to determine 

the applicability domain in all QSAR models. To construct the 

William Plot, the leverage hi for each chemical compound in 

which QSAR model was used to predict its property was 

calculated according to the equation 5: 

ℎ𝑖 = 𝑥𝑖(𝑋𝑇𝑋)−1𝑥𝑖
𝑇   5 

Where, x refers to the descriptor vector of the considered 

compound and X Represents the descriptor matrix derived 

from the training set descriptor values. The warning leverage 

(h*) was determined using equation 6: 

ℎ∗ =
3(𝑝+1)

𝑁
    6 

Where N is the number of training compounds and p is the 

number of descriptors in the model. 

 

Molecular dynamics simulation  

The molecular dynamics simulation was carried out to 

describe the interaction between the inhibitor molecules and 

the metallic surface. The adsorption locator module 

implemented in the Materials studio 8.0 software from 

Accelrys was used for the simulation. The inhibitor molecules 

were modeled and optimized using the Condensed-phase 

Optimized Molecular Potentials for Atomistic Simulation 

Studies (COMPASS) force field. COMPASS is a robust and 

well-developed force field that was derived based on fitting 

against a wide range of experimental data for organic and 

inorganic compounds (Wymyslowski et al., 2008). This 

informs its suitability for treating metal and non-metal 

containing systems. The whole system was performed at 

298K controlled by the Andersen thermostat with fixed 

number-volume-energy (microcanonical)  ensemble, with a 

time step of 1.0 fs, simulation time of 500ps, using the 

COMPASS force field. The MD simulation was carried out in 

a simulation box (24.82 Å ×24.82 Å ×45.27 Å) with periodic 

boundary conditions. The box includes a Fe slab, an acid 

solution layer, and an inhibitor molecule. For the iron surface, 

Fe (110) surface was selected as the studied surface for that Fe 

(110) was density packed surface and was the most stable 

(Khaled, 2008). The iron crystal contained ten layers and 

seven layers near the bottom were frozen. The density of the 

acid solution layer was set at 1.0 g/cm-3. The adsorption 

energy in solution was calculated using equation 7 (Zhao et 

al., 2014)  

𝐸𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝐸𝑇𝑜𝑡𝑎𝑙 − (𝐸𝐹𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒+𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 +

𝐸𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟+𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) + 𝐸𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  7 

 

Results and Discussion 

Quantitative structure–activity relationship (QSAR) 

Pearson's correlation matrix was used on the training set to 

select the significant descriptors and it was found that among 

all the computed descriptors Electrophilicity index (ω), 

SpMin8_Bhe, SpMin2_Bhp, AVP-2 and SpMAD_D construct 

the best model and show strong correlation (Table 3). 

 

 

Table 3: Correlation matrix for the studied variable 

  %IE 𝜔 SpMin8_Bhe SpMin2_Bhp AVP-2 SpMAD_D 

%IE 1      

𝜔 0.327205 1     

SpMin8_Bhe -0.13403 -0.20681 1    

SpMin2_Bhp 0.438851 -0.16755 -0.4891 1   

AVP-2 0.553372 0.176477 -0.67728 0.215628 1  

SpMAD_D 0.193828 0.144248 -0.75398 0.74464 0.407443 1 

  

The selected descriptors were subjected to regression analysis 

with the experimentally determined inhibition efficiencies as 

the dependent variable and the selected descriptors as the 

independent variables using Genetic function approximation 

(GFA) method in Material studio software, a new GFA 

equation (Equation 8) was developed on the basis of the 

training set: 

%𝐈𝐄 = 1.422315151 ∗ 𝜔 +  23.122686929 ∗
SpMin8_Bhe     +  89.168074872 ∗ SpMin2_Bhp +
 377.048667573 ∗  AVP − 2     −  6.890458835 ∗
 SpMAD_D  −  153.771948048     8 

 

𝑁𝑡𝑟𝑎𝑖𝑛 = 18, 𝑅𝑡𝑟𝑎𝑖𝑛
2 = 0.98, 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

2 = 0.98, 𝑄𝐿𝑂𝑂
2 =

0.97, 𝑁𝑡𝑒𝑠𝑡 = 7 𝑅𝑡𝑒𝑠𝑡
2 =0.87 

In the further study, the constructed model from the training 

set was used to evaluate the predictive ability of the produced 

model by predicting the %IE values in the prediction set. The 

results are given in Table 4. The predicted inhibition 

efficiency were plotted against the experimental inhibition 

efficiency for the training and test sets in Fig. 1.  

 

Table 4: Experimental and predicted %IE with Residuals 

S/N 
Exp. 

%IE 

Pred. 

%IE 
Residuals S/N 

Exp. 

%IE 

Pred. 

%IE 
Residuals 

1a 50 50.27 -0.27 14a 34 36.39 -2.39 

2b 59 58.07 0.93 15a 43 42.96 0.04 

3a 63 62.1 0.9 16a 77.4 76.54 0.86 
4a 47 46.55 0.45 17b 75.1 75.23 -0.13 

5b 80 81.3 -1.3 18a 41 38.5 2.5 

6a 52 55.49 -3.49 19a 71 70.84 0.16 
7a 39 38.85 0.15 20a 63.62 62.77 0.85 

8b 73 74.48 -1.48 21a 71.79 72.66 -0.87 

9a 53 52.16 0.84 22b 63.24 64.64 -1.4 
10a 51 51.87 -0.87 23a 66.83 66.53 0.3 

11a 87 84.61 2.39 24a 49.88 48.05 1.83 

12a 75 78.28 -3.28 25b 60.09 58.34 1.75 
13b 67 66.5 0.5     

a = training set, b = test set  
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Fig. 1: Plot of predicted versus actual inhibition efficiency 

(%IE) value for the model  

 

The result of the GFA QSAR model is in conformity with the 

standard shown in Table 3 as seen in equation-3. The 

closeness of coefficient of determination (R2) to its absolute 

value of 1.0 is an indication that the model explained a very 

high percentage of the response variable (descriptor) 

variation, high enough for a robust QSAR model. The high 

adjusted R2 (R2
adj) value and its closeness in value to the 

value of R2 implies that the model has excellent explanatory 

power to the descriptors in it. More so, the high and closeness 

of Q2 value to R2 revealed that the model was not over fitted. 

The high R2
pred is an indication that the model is capable of 

providing valid predictions for new molecules that fall within 

its applicability domain.  

Furthermore, the equation contains five descriptors and each 

descriptor has a positive or negative coefficient attached to it. 

These coefficients along with the value of descriptor have a 

significant role in deciding the overall inhibition efficiency of 

the inhibitor molecules. Examination of equation-13 shows 

that coefficients of each descriptor played an important role 

in deriving the inhibition efficiency. From the point of view 

of inhibition of the molecules in terms of %IE values, the 

weight of positive coefficient is very significant because it 

contributes towards the increased value of %IE. So the 

descriptors with high weight positive coefficients are most 

important followed by descriptors with the low weight 

negative coefficient and lastly the descriptors with high 

weight negative coefficients. On the basis of values of the 

coefficients on the model, the associated descriptors are 

arranged in a sequence pertaining to their contribution 

towards overall inhibition efficiency of the inhibitors, in the 

following increasing order of inhibition efficiency of 

inhibitors towards corrosion of steel. 

 
𝐀𝐕𝐏 − 𝟐 > 𝐒𝐩𝐌𝐢𝐧𝟐_𝐁𝐡𝐩 > 𝐒𝐩𝐌𝐢𝐧𝟖_𝐁𝐡𝐞 > 𝜔 > 𝐒𝐩𝐌𝐀𝐃_𝐃 

 

 

Table 5: Specification of entered descriptors in genetic algorithm of the developed model 

S/N Symbol Description Class/Group 

1 Ω Electrophilicity index  3D/Electronic Descriptor 

2 SpMin8_Bhe 

 

Smallest absolute eigenvalue of Burden modified matrix - n 8 / 

weighted by relative Sanderson electronegativities 
 

2D/Burden Modified Eigen values Descriptor 

 

3 SpMin2_Bhp 

 

Smallest absolute eigenvalue of Burden modified matrix - n 2 / 

weighted by relative polarizabilities 
 

2D/Burden Modified Eigenvalues Descriptor 

 

4 AVP-2 Average valence path, order 2 2D/PaDELChiPath Descriptor 

5 SpMAD_D Spectral mean absolute deviation from topological distance matrix 2D/TopologicalDistanceMatrixDescriptor 

 

 

The leverages for every compound in the dataset were plotted 

against their standardized residuals, leading to discovery of 

outliers and influential chemicals in the models. Figure 2 

shows the Williams plot of standardized residuals against 

calculated leverages for both the training and test set. 

 
Fig. 3: The Williams plot, the plot of standardized 

Residuals versus the leverage value for all the data set 

 

The Williams plot for the QSAR is illustrated in Fig. 3. The 

warning leverage (h*), was found to be1.0 (N = 18 and p=5) 

for the developed QSAR model (Roy, 2015). The chemicals 

that had a standardized residual more than the standard 

deviation units were considered to be outliers while chemicals 

with a leverage value higher than h* were considered to be 

influential or high leverage chemicals. Based on the leverages 

none of the compounds were found to be outside of the 

defined AD (Fig. 2) of the QSAR model. In addition, no 

outlier compounds with standardized residuals > ±3d for the 

dataset were identified. 

Molecular dynamic simulation study 

Corrosion inhibition by organic compounds is mainly due to 

their ability to adsorb onto a metal surface to form a protective 

film. The adsorption of organic inhibitors at the metal/solution 

interface takes place through the replacement of water 

molecules by organic inhibitor molecules according to the 

following process;  

𝑶𝒓𝒈(𝒔𝒐𝒍) + 𝒙𝑯𝟐𝑶(𝒂𝒅𝒔) ↔ 𝑶𝒓𝒈(𝒂𝒅𝒔) + 𝒙𝑯𝟐𝑶(𝒔𝒐𝒍) 

Where Org(sol) and Org(ads) are organic molecules in the 

solution and adsorbed on the metal surface, respectively, x is 

the number of water molecules replaced by the organic 

molecules.  

 

It is essential to know the mode of adsorption and the 

adsorption energy that can give valuable information on the 

interaction of inhibitor and metal surface. The adsorption of 

the studied inhibitor molecules on steel surface was simulated 

by modeling the interactions between the inhibitor molecules 

and Fe(110) crystal surface. The equilibrium configurations of 

the simulated system for inhibitor-11 are shown in Fig. 3; all 

different systems for the inhibitors were studied similarly. The 
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adsorption energies in kcal/mol of the systems are listed in 

Table 6.  

 

 
Fig. 3: Molecular dynamic system of Fe, inhibitor 

molecule and acidic layer 

 

 

 

Table 6: Adsorption energies and inhibition efficiencies 

(%IE) of Amino acids derivatives 

S/N 

Adsorption   

Energy 

(kcal/mol) 

Exp.  

%IE 
S/N 

Adsorption  

Energy  

(kcal/mol) 

Exp.  

%IE 

1 -42.82 50 14 -181.67 34 

2 -43.16 59 15 -197.00 43 

3 -256.72 63 16 -280.41 77.4 

4 -214.82 47 17 -259.21 75.1 

5 -399.12 80 18 -128.24 41 

6 -229.23 52 19 -227.37 71 

7 -244.21 39 20 -285.05 63.62 

8 -297.5 73 21 -126.58 71.79 

9 -234.58 53 22 -467.95 63.24 

10 -227.71 51 23 -253.35 66.83 

11 -651.7 87 24 -380.73 49.88 

12 -290.94 75 25 -346.24 60.09 

13 -257.21 67    

 

It is apparent from the molecular structures of examined 

inhibitors; these molecules contain various lone pair electrons 

on N, and O atoms as well as π-aromatic frameworks. 

Therefore, giving the lone pair electrons on heteroatoms to the 

empty d orbitals of iron. It can be noticed from Fig. 3; the 

inhibitor is adsorbed nearly parallel to the Fe (110) surface 

with the assistance of the donation of the lone pair of electrons 

of the N in the amino functionality and is also adsorbed 

through the carboxylic functional group. 

It was accounted for in many investigations that the primary 

mechanism of the interaction between corrosion inhibitors and 

metallic iron is by adsorption. In this way, the adsorption 

energies calculated via molecular dynamics simulations 

approach to give us an immediate understanding to compare 

the anticorrosive performances of inhibitor molecules. It is 

seen from the Table 1 that the calculated adsorption energies 

of the examined inhibitors on the iron surface are generally 

negative values and most of them are greater than 100 

kcal/mol suggesting chemisorptive interaction (Akalezi et al., 

2012). Only two of the inhibitors 1 and 2 were found to be 

<100 kcal mol−1 which fall within the range of physisorption 

interactions (Akalezi et al., 2012). These negative values 

denote that the adsorption happening amongst metal and 

inhibitors could happen spontaneously. The largest negative 

adsorption energy represents that the system is most stable 

and adsorption is very strong. This implies that the corrosion 

inhibitor binds to Fe (110) surface more easily and firmly 

(Obot et al., 2016). The values of the adsorption energies 

obtained via molecular dynamic simulation approach are in 

agreement with experimentally observed corrosion inhibition 

efficiencies of the studied inhibitors. 

 

Conclusion   

The inhibitive performance of twenty-five amino acids and 

related compounds on steel corrosion in 1 M HCl were 

investigated using QSAR analysis and Molecular dynamic 

simulations. The following conclusions can be drawn from the 

results: 

1.  The developed GFA model shows good statistical 

significance. The prediction of corrosion efficiencies nicely 

matched the experimental measurements.  

2. The studied inhibitor molecules inhibit steel corrosion in 1 

M HCl by adsorbing on the steel surface and form the 

protective film. Their adsorption occurs mainly via 

Chemisorption. 

3. Molecular dynamics simulations revealed that the studied 

molecules have strong interactions with Fe surface. 
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